Examining the Effect of Cuff Pressure in Blood Flow Restriction Training


Abstract views: 140 / PDF downloads: 64

Authors

  • Hüsnü KOCAMAN Gazi University, Faculty of Sports Sciences
  • Latif AYDOS Gazi University, Faculty of Sports Sciences

DOI:

https://doi.org/10.5281/zenodo.10310839

Keywords:

Cuff widht, cuff pressures, blood flow restriction

Abstract

Blood flow restriction training, which is one of the methods applied to enhance muscle hypertrophy and strength, has gained popularity in light of the findings revealed by recent scientific research. It is an undeniable fact that high-intensity resistance exercises contribute to an increase in muscle hypertrophy and strength. However, it has been observed that these exercises also elevate the risk of injury due to their high intensity. On the other hand, low-intensity resistance exercises do not provide sufficient mechanical tension and metabolic accumulation necessary for the development of muscle strength and hypertrophy. At this point, low-intensity blood flow restriction resistance exercises can minimize the potential risks of high-intensity exercises. The reduction in venous circulation caused by the restriction leads to an increased impact of metabolic accumulation on muscle hypertrophy. As the prevalence of blood flow restriction resistance exercises increases, inconsistencies arise in the recommended levels of cuff pressures measured in mmHg. This brief compilation aims to present a concise overview of the literature, explaining the principles of blood flow restriction training and providing insights into determining the cuff pressures used during the application. Initial research on blood flow restriction employed fixed pressures, but with advancements in technology, contemporary studies demonstrate diverse outcomes by applying individualized cuff pressures based on factors such as soft tissue volume, body fat percentage, and limb circumference. Cuff pressures vary between 50-300 mm Hg depending on individual differences. These individual differences should be considered for achieving the desired results.

References

Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., Kearns, C. F., Inoue, K., Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research, 1(1), 6-12. doi:10.3806/ijktr.1.6

Abe, T., Kearns, C. F., & Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of applied physiology, 100(5), 1460-1466.

Abe, T., Sakamaki, M., Fujita, S., Ozaki, H., Sugaya, M., Sato, Y., & Nakajima, T. (2010). Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. Journal of geriatric physical therapy, 33(1), 34-40.

Aguayo, D., Mueller, S. M., Boutellier, U., Auer, M., Jung, H. H., Flück, M., & Toigo, M. (2016). One bout of vibration exercise with vascular occlusion activates satellite cells. Experimental physiology, 101(2), 295-307.

Allen, D. G., & Trajanovska, S. (2012). The multiple roles of phosphate in muscle fatigue. Frontiers in physiology, 3, 463.

Anderson, A. B., Owens, J. G., Patterson, S. D., Dickens, J. F., & LeClere, L. E. (2019). Blood flow restriction therapy: from development to applications. Sports medicine and arthroscopy review, 27(3), 119-123.

Aniceto, R. R., & da Silva Leandro, L. (2022). Practical blood flow restriction training: New methodological directions for practice and research. Sports Medicine-Open, 8(1), 1-7.

Baar, K. (2006). Training for endurance and strength: lessons from cell signaling. Medicine & Science in Sports & Exercise, 38(11), 1939-1944.

Barnett, B. E., Dankel, S. J., Counts, B. R., Nooe, A. L., Abe, T., & Loenneke, J. P. (2016). Blood flow occlusion pressure at rest and immediately after a bout of low load exercise. Clinical physiology and functional imaging, 36(6), 436-440.

Bellamy, L. M., Joanisse, S., Grubb, A., Mitchell, C. J., McKay, B. R., Phillips, S. M., ... & Parise, G. (2014). The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PloS one, 9(10), e109739.

Beyer, K. S., Fukuda, D. H., Boone, C. H., Wells, A. J., Townsend, J. R., Jajtner, A. R., ... & Stout, J. R. (2016). Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. The Journal of Strength & Conditioning Research, 30(5), 1213-1223.

Burgomaster, K. A., Moore, D. R., Schofield, L. M., Phillips, S. M., Sale, D. G., & Gibala, M. J. (2003). Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine & Science in Sports & Exercise, 35(7), 1203-1208

Centner, C., Wiegel, P., Gollhofer, A., & König, D. (2019). Effects of Blood Flow Restriction Training on Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-Analysis. Sports Medicine, 49(1), 95-108. doi:10.1007/s40279-018-0994-1

Clark, B. C., Manini, T. M., Hoffman, R. L., Williams, P. S., Guiler, M. K., Knutson, M. J., . . . Kushnick, M. R. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scandinavian Journal of Medicine & Science in Sports, 21(5), 653-662. doi:10.1111/j.1600-0838.2010.01100.x

Clarkson, P. M., Byrnes, W. C., McCormick, K. M., Turcotte, L. P., & White, J. S. (1986). Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. International journal of sports medicine, 7(03), 152-155.

Dankel, S. J., Jessee, M. B., Abe, T., & Loenneke, J. P. (2016). The Effects of Blood Flow Restriction on Upper-Body Musculature Located Distal and Proximal to Applied Pressure. Sports Medicine, 46(1), 23-33. doi:10.1007/s40279-015-0407-7

DeLorme, T. L. (1945). Restoration of muscle power by heavy-resistance exercises. JBJS, 27(4), 645-667.

Fahs, C. A., Loenneke, J. P., Rossow, L. M., Tiebaud, R. S., & Bemben, M. G. (2012). Methodological considerations for blood flow restricted resistance exercise. Journal of Trainology, 1(1), 14-22. doi:10.17338/trainology.1.1_14

Farup, J., De Paoli, F., Bjerg, K., Riis, S., Ringgard, S., & Vissing, K. (2015). Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scandinavian journal of medicine & science in sports, 25(6), 754-763.

Fry, A. C., Kraemer, W. J., Weseman, C. A., Conroy, B. P., Gordon, S. E., Hoffman, J. R., & Maresh, C. M. (1991). The Effects of an Off‐season Strength and Conditioning Program on Starters and Non‐starters in Women's Intercollegiate Volleyball. Journal of Strength and Conditioning Research, 5, 174–181.

Fujita, T., Brechue, W. F., Kurita, K., Sato, Y., & Abe, T. (2008). Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. International Journal of KAATSU Training Research, 4(1), 1-8. doi:10.3806/ijktr.4.1

Gibala, M. J., MacDougall, J. D., Tarnopolsky, M. A., Stauber, W. T., & Elorriaga, A. (1995). Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. Journal of Applied Physiology, 78(2), 702-708.

Henneman, E., Somjen, G., & Carpenter, D. O. (1965). Functional significance of cell size in spinal motoneurons. J Neurophysiol, 28, 560-580. doi:10.1152/jn.1965.28.3.560

Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. British Journal of Sports Medicine, 51(13), 1003-1011. doi:10.1136/bjsports-2016-097071

Hughes, L., Jeffries, O., Waldron, M., Rosenblatt, B., Gissane, C., Paton, B., & Patterson, S. D. (2018). Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ, 6,1-12

Hunt, J. E. A., Stodart, C., & Ferguson, R. A. (2016). The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction. European journal of applied physiology, 116(7), 1421-1432. doi:10.1007/s00421-016-3399-6

Jessee, M., Dankel, S., Buckner, S., Mouser, J., Mattocks, K., & Loenneke, J. (2017). The Cardiovascular and Perceptual Response to Very Low Load Blood Flow Restricted Exercise. International Journal of Sports Medicine, 38(08), 597-603. doi:10.1055/s-0043-109555

Jessee, M. B., Buckner, S. L., Dankel, S. J., Counts, B. R., Abe, T., & Loenneke, J. P. (2016). The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Medicine, 46(6), 913-921. doi:10.1007/s40279-016-0473-5

Jessee, M. B., Mattocks, K. T., Buckner, S. L., Dankel, S. J., Mouser, J. G., Abe, T., & Loenneke, J. P. (2018). Mechanisms of blood flow restriction: the new testament. Techniques in Orthopaedics, 33(2), 72-79.

Joyner, M. J., Dietz, N. M., & Shepherd, J. T. (2001). From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs. Journal of applied physiology, 91(6), 2431-2441.

Kaijser, L., Sundberg, C. J., Eiken, O., Nygren, A., Esbjornsson, M., Sylven, C., & Jansson, E. (1990). Muscle oxidative capacity and work performance after training under local leg ischemia. Journal of Applied Physiology, 69(2), 785-787.

Kamiş, O., & Aydos, L. (2022). Kan akışı kısıtlamalı direnç egzersizi: kuvvet ve hipertrofiyi en üst düzeye çıkarmak için yeni bir antrenman tekniği: Kısa Derleme. Türkiye Klinikleri Spor Bilimleri Dergisi, 14(2).

Kosek, D. J., Kim, J. S., Petrella, J. K., Cross, J. M., & Bamman, M. M. (2006). Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. Journal of Applied Physiology, 101(2), 531-544. doi:10.1152/japplphysiol.01474.2005

Lixandrao, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceicao, M. S., Damas, F., . . . Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Medicine, 48(2), 361-378. doi:10.1007/s40279-017-0795-y

Loenneke, J. P., Wilson, J. M., Marín, P. J., Zourdos, M. C., & Bemben, M. G. (2012). Low intensity blood flow restriction training: a meta-analysis. European journal of applied physiology, 112(5), 1849-1859. doi:10.1007/s00421-011-2167-x

Loenneke, J. P., Fahs, C. A., Rossow, L. M., Sherk, V. D., Thiebaud, R. S., Abe, T., et al. (2012b). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 112, 2903–2912.

Loenneke, J. P., Fahs, C. A., Rossow, L. M., Thiebaud, R. S., Mattocks, K. T., Abe, T., & Bemben, M. G. (2013). Blood flow restriction pressure recommendations: a tale of two cuffs. Frontiers in physiology, 4, 249.

Loenneke, J. P., Thiebaud, R. S., Abe, T., & Bemben, M. G. (2014). Blood flow restriction pressure recommendations: the hormesis hypothesis. Medical hypotheses, 82(5), 623-626.

Loenneke, J. P., Kim, D., Fahs, C. A., Thiebaud, R. S., Abe, T., Larson, R. D., ... & Bemben, M. G. (2015). Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle & nerve, 51(5), 713-721.

Lorenz, D. S., Bailey, L., Wilk, K. E., Mangine, R. E., Head, P., Grindstaff, T. L., & Morrison, S. (2021). Blood flow restriction training. Journal of athletic training, 56(9), 937-944.

Malm, C. (2001). Exercise‐induced muscle damage and inflammation: fact or fiction?. Acta Physiologica Scandinavica, 171(3), 233-239.

Manini, T. M., & Clark, B. C. (2009). Blood Flow Restricted Exercise and Skeletal Muscle Health. Exercise and Sport Sciences Reviews, 37(2), 78-85. doi:10.1097/JES.0b013e31819c2e5c

Mattocks, K. T., Jessee, M. B., Counts, B. R., Buckner, S. L., Mouser, J. G., Dankel, S. J., . . . Loenneke, J. P. (2017). The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiology & Behavior, 171, 181-186. doi:10.1016/j.physbeh.2017.01.015

Maughan, R. J., Watson, J. S., & Weir, J. (1983). Strength and cross‐sectional area of human skeletal muscle. The Journal of physiology, 338(1), 37-49.

McCall, G. E., Byrnes, W. C., Dickinson, A., Pattany, P. M., & Fleck, S. J. (1996). Muscle fiber hypertrophy: Hyperplasia, and capillary density in college men after resistance training. Journal of Applied Physiology, 81(5), 2004-2012. doi:10.1152/jappl.1996.81.5.2004

McDonagh, M. J., & Davies, C. T. M. (1984). Adaptive response of mammalian skeletal muscle to exercise with high loads. European journal of applied physiology and occupational physiology, 52, 139-155.

McEwen, J. A., Owens, J. G., & Jeyasurya, J. (2019). Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation?. Journal of Medical and Biological Engineering, 39, 173-177.

Mouser, J. G., Dankel, S. J., Jessee, M. B., Mattocks, K. T., Buckner, S. L., Counts, B. R., & Loenneke, J. P. (2017). A tale of three cuffs: the hemodynamics of blood flow restriction. European journal of applied physiology, 117(7), 1493-1499. doi:10.1007/s00421-017-3644-7

Mouser, J. G., Dankel, S. J., Mattocks, K. T., Jessee, M. B., Buckner, S. L., Abe, T., & Loenneke, J. P. (2018). Blood flow restriction and cuff width: effect on blood flow in the legs. Clinical Physiology and Functional Imaging, 38(6), 944-948. doi:10.1111/cpf.12504

Mouser, J. G., Jessee, M. B., Mattocks, K. T., Bell, Z. W., Buckner, S. L., Dankel, S. J., . . . Loenneke, J. P. (2018). Blood flow restriction: Methods matter. Experimental Gerontology, 104, 7-8. doi:10.1016/j.exger.2018.01.012

Mulligan, S. E., Fleck, S. J., Gordon, S. E., Koziris, L. P., Triplett-McBride, N. T., & Kraemer, W. J. (1996). Influence of resistance exercise volume on serum growth hormone and cortisol concentrations in women. The Journal of strength & conditioning research, 10(4), 256-262.

Noordin, S., McEwen, J. A., Kragh Jr, C. J. F., Eisen, A., & Masri, B. A. (2009). Surgical tourniquets in orthopaedics. JBJS, 91(12), 2958-2967.

Nakajima, T., Kurano, M., Iida, H., Takano, H., Oonuma, H., Morita, T., . . . Group, K. T. (2006). Use and safety of KAATSU training:Results of a national survey. International Journal of KAATSU Training Research, 2(1), 5-13. doi:10.3806/ijktr.2.5

Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., . . . Loenneke, J. (2019). Blood Flow Restriction Exercise Position Stand: Considerations of Methodology, Application, and Safety. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.00533

Pearson, S. J., & Hussain, S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports medicine, 45, 187-200.

Pope, Z. K., Willardson, J. M., & Schoenfeld, B. J. (2013). Exercise and Blood Flow Restriction. Journal of Strength and Conditioning Research, 27(10), 2914-2926. doi:10.1519/jsc.0b013e3182874721

Proske, U., & Morgan, D. L. (2001). Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. The Journal of physiology, 537(2), 333-345.

Ratamess, N. A., Alvar, B. A., Evetoch, T. E., Housh, T. J., Ben Kibler, W., Kraemer, W. J., & Triplett, N. T. (2009). Progression Models in Resistance Training for Healthy Adults. Medicine and Science in Sports and Exercise, 41(3), 687-708. doi:10.1249/MSS.0b013e3181915670

Sasaki, S., Higashi, Y., Nakagawa, K., Kimura, M., Noma, K., Sasaki, S., ... & Chayama, K. (2002). A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. American journal of hypertension, 15(4), 302-309.

Sato, Y. (2005). The history and future of KAATSU Training. International Journal of KAATSU Training Research, 1(1), 1-5. doi:10.3806/ijktr.1.1

Sato, Y., Yoshitomi, A., & Abe, T. (2005). Acute growth hormone response to low-intensity KAATSU resistance exercise: Comparison between arm and leg. International Journal of KAATSU Training Research, 1(2), 45-50. doi:10.3806/ijktr.1.45

Schiaffino, S., Reggiani, C., Akimoto, T., & Blaauw, B. (2021). Molecular Mechanisms of Skeletal Muscle Hypertrophy. J Neuromuscul Dis, 8(2), 169-183. doi:10.3233/JND-200568

Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857-2872.

Schoenfeld, B. J., Wilson, J. M., Lowery, R. P., & Krieger, J. W. (2016). Muscular adaptations in low- versus high-load resistance training: A meta-analysis. European Journal of Sport Science, 16(1), 1-10. doi:10.1080/17461391.2014.989922

Scott, B. R., Loenneke, J. P., Slattery, K. M., & Dascombe, B. J. (2015). Exercise with Blood Flow Restriction: An Updated Evidence-Based Approach for Enhanced Muscular Development. Sports Medicine, 45(3), 313-325. doi:10.1007/s40279-014-0288-1

Shaw, J. A., & Murray, D. G. (1982). The Relationship Between Tournıquet Pressure an Underlying Soft Tissue Pressure İn The Thigh. Journal of Bone and Joint Surgery-American Volume, 64(8), 1148-1152. doi:10.2106/00004623-198264080-00004

Shinohara, M., Kouzaki, M., Yoshihisa, T., & Fukunaga, T. (1998). Efficacy of tourniquet ischemia for strength training with low resistance. European Journal of Applied Physiology and Occupational Physiology, 77(1-2), 189-191. Retrieved from ://WOS:000071009500028

Sieljacks, P., Knudsen, L., Wernbom, M., & Vissing, K. (2018). Body position influences arterial occlusion pressure: implications for the standardization of pressure during blood flow restricted exercise. European journal of applied physiology, 118, 303-312

Siff, M. C. (2000). Biomechanical foundations of strength and power training. Biomechanics in sport: performance enhancement and injury prevention, 103-139.

Stone, M. H. (1993). Position statement: Explosive exercise and training. Strength & Conditioning Journal, 15(3), 7-15.

Sumide, T., Sakuraba, K., Sawaki, K., Ohmura, H., & Tamura, Y. (2009). Effect of resistance exercise training combined with relatively low vascular occlusion. Journal of Science and Medicine in Sport, 12(1), 107-112. doi:10.1016/j.jsams.2007.09.009

Takarada, Y., Sato, Y., & Ishii, N. (2002). Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European journal of applied physiology, 86(4), 308-314. doi:10.1007/s00421-001-0561-5

Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of Applied Physiology, 88(6), 2097-2106. doi:10.1152/jappl.2000.88.6.2097

Tesch, P. (1988). Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Medicine and science in sports and exercise, 20(5 Suppl), 132-134.

Thiebaud, R. S., Yasuda, T., Loenneke, J. P., & Abe, T. (2013). Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interventional Medicine and Applied Science, 5(2), 53-59.

Vierck, J., O'Reilly, B., Hossner, K., Antonio, J., Byrne, K., Bucci, L., & Dodson, M. (2000). Satellite cell regulation following myotrauma caused by resistance exercise. Cell biology international, 24(5), 263-272.

Vijayan, K., Thompson, J. L., Norenberg, K. M., Fitts, R. H., & Riley, D. A. (2001). Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles. Journal of Applied Physiology, 90(3), 770-776.

Yasuda, T., Abe, T., Sato, Y., Midorikawa, T., Kearns, C. F., Inoue, K., . . . Ishii, N. (2005). Muscle fiber cross-sectional area is increased after two weeks of twice daily KAATSU-resistance training. International Journal of KAATSU Training Research, 1(2), 65-70. doi:10.3806/ijktr.1.65

Yasuda, T., Fujita, S., Ogasawara, R., Sato, Y., & Abe, T. (2010). Effects of low‐intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clinical Physiology and Functional Imaging, 30(5), 338-343. doi:10.1111/j.1475-097x.2010.00949.x

Younger, A. S., McEwen, J. A., and Inkpen, K. (2004). Wide contoured thigh cuffs and automated limb occlusion measurement allow lower tourniquet pressures. Clin. Orthop. Relat. Res. 286–293.

Published

2023-12-18

How to Cite

KOCAMAN, H., & AYDOS, L. (2023). Examining the Effect of Cuff Pressure in Blood Flow Restriction Training . International Journal of Holistic Health, Sports and Recreation, 2(2), 14–27. https://doi.org/10.5281/zenodo.10310839